Amine Base-catalyzed H-D Exchange Reaction of 2,3,4-Trimethylthiazolium Iodide in Methanol-da

Yumihiko Yano,* Yoshiharu Tamura, and Waichiro Tagaki*,†

Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376

†Department of Applied Chemistry, Faculty of Engineering, Osaka City University,

Sugimoto-cho, Sumiyoshi-ku, Osaka 558

(Received June 16, 1980)

Synopsis. The rates of amine base-catalyzed H-D exchange of 2-methyl hydrogens of 2,3,4-trimethylthiazolium iodide were measured in deuterated methanol by using following amines: α-picoline, imidazole, 2- and 4-aminopyridine. The results indicated that the reaction was subject to a general base catalysis. The solvent effect is also described.

© 1980 The Chemical Society of Japan

The acyloin condensation catalyzed by thiazolium salts are known to involve multistep reaction pathways.¹⁾ One crucial step of them is the ionization of initially formed $2-(\alpha-hydroxyalkyl)$ thiazolium salt (1) to form so called "active aldehyde (2)" (Eq. 1).

Until recently, the mechanism of this step has been left uncertain whether it is subject to specific base or general base catalysis. Recently, the deprotonation from 2,3,4-trimethylthiazolium and 2-(α-hydroxyethyl)-thiazolium ions has been reported to occur by general base catalysis in aqueous buffer solution. ^{2,3} In contrast, we were unable to detect general base catalysis by an internal dimethylamino group of thiazolium salt in the benzoin condensation in methanol. ⁴ Therefore it was desired to examine base catalysis of externally added amines, also in methanol. In this paper, we describe the H-D exchange reaction of 2,3,4-trimethylthiazolium iodide (3) in deuterated methanol, catalyzed by several amines.

Results and Discussion

The amines employed were α-picoline, imidazole, 2and 4-aminopyridine. The rate constants of H-D exchange were determined by following the relative peak area of 2-methyl protons and that of nonexchangeable 3- or 4-methyl protons by NMR. decomposition products were detected under the present reaction conditions. The results are shown in The base concentration was changed for imidazole. The rate constants are linearly dependent on the concentration of imidazole. From the slope, the apparent second-order rate constant for imidazole is calculated to be $6.10 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$. Since pK_a values of the bases in CD₃OD are not available, the estimated pK_a values in CH_3OH were employed. The estimation is based on the fact that the plots of pK_a values of ammonia and substituted anilines in H2O against those in CH_3OH give a single straight line. Thus, the p K_a of desired amine in CH₃OH can be estimated from the pK_a in H_2O , as indicated in Table 1 for 2- and

Table 1. The rate constants of H-D exchange reaction of 2,3,4-trimethylthiazolium iodide^{a)} in methanol- d_4 at 38 °C

Base	pK _a (in MeOH)	10 ² [Base]	104 k _{obsd}	$\frac{10^3 k_{\text{app}}}{10^3 k_{\text{app}}}$
	(III MeOri)	M	s -1	$\overline{M^{-1}}$ s ^{-1b)}
α-Picoline	6.11°)	40	0.967	0.242
2-Amino- pyridine	7.9 ^{d)}	10	4.03	4.03
Imidazole	8.10°)	3.3	2.77	
		6.8	4.44	
		13.6	8.41	
		27.2	16.5	6.10
4-Amino- pyridine	9.9 ^{d)}	5.0	146	292

a) [Thiazolium salt]=0.1 M. b) Apparent second-order rate constants, $k_{app} = \frac{k_{obsd}}{[Base]}$. c) C.H. Rochster, *J. Chem. Soc.*, *B*, **1967**, 33. d) Estimated values. e) M. Tanaka, "Acid and Base," Shoka-bo, Tokyo (1975), p. 46.

Table 2. The rate constants^{a)} in CD₃OD–D₂O at 38 °C

CD ₃ OD (%)	$D_{p)}$	$10^4 k_{ m obsd}/{ m s}^{-1}$	Rel rate
100	32.6	146	128
50	58.5	21.1	18
10	75.0	1.60	1.4
0	78.5	1.14°)	1

- a) 4-Aminopyridine (0.05 M) was used as a base.
- b) Dielectric constants in CH₃OH-H₂O system.⁷⁾
- c) This is the extrapolated value.

4-aminopyridine. Plots of log $k_{\rm app}$ against the p $K_{\rm a}$'s of the bases gave a straight line [slope=0.81(γ = 0.995)]. This may indicate that a general base catalysis is also important for the present H-D exchange reaction in addition to the lyate ion catalysis.

In model reactions of thiamine catalysis, it has been shown that all kinetically significant steps proceed faster in ethanol than in water. (6) This suggests that in many thiamine pyrophosphate dependent enzymatic reactions, the catalysis is in large part to occur through the binding of the thiazolium portion of the coenzyme in a hydrophobic region of the protein. Therefore, more detailed solvent effects were also examined for the present exchange reaction, by changing the composition of D₂O in CD₃OD as shown in Table 2.

Regarding this solvent effect, it may be of interest to see a relationship between the dielectric constants and the composition of CH_3OH-H_2O mixture. Albright et al. reported that the dielectric constant increases linearly with the increase of water content. As shown in Table 2, $\log k_{\rm obsd}$ decreases linearly with the increase

of the apparent dielectric constants. Thus, less polar solvent is more favorable for the present H-D exchange reaction. This may be accounted for by an accepted view that the ionic structure of the reactant state is stabilized more in a polar solvent and the neutral zwitter ionic carbanion is stabilized more in a less polar This suggests that the enzyme-mediated reaction of thiamine occurs in a relatively nonpolar environment. The results of the above model reaction also support the occurrence of a general base catalysis for the carbanion formation at the α -carbon of 2-(α hydroxyethyl)thiazolium ion, especially under hydrophobic conditions. Thus, it is tempting to speculate that aminopyrimidine moiety of thiamine would act as an internal base in step of the carbanion formation from 2-(α-hydroxyethyl)thiazolium ion. However, it should also be kept in mind that previous failure to observe internal base catalysis in benzoin condensation has been still left unanswered.

Experimental

NMR spectra were recorded on a Varian A-60 spectrometer.

Materials. Deuterium oxide (99.75%, Merck) and methanol- d_4 (99%, Merck) were used. 2- and 4-Aminopyridines were purified by recrystallization from diethyl etherhexane, mp 58 °C (lit,8) mp 58 °C) and mp 156—158 °C (lit,9) mp 157 °C). Imidazole (Wako Pure Chemical Co.) was used without further purification. Imidazole hydrochloride was prepared from imidazole and HCl in EtOH. Purification was performed by recrystallization (MeOH–diethyl ether). α-Picoline was purified by distillation.

2,3,4-Trimethylthiazolium Iodide was prepared from 2,4-dimethylthiazole and methyl iodide. Mp 250 °C (EtOH), NMR (CD₃OD), δ 2.58 (3H, s), 2.98 (3H, s), 3.96 (3H, s), and 7.60 (1H, s). Found: C, 28.30; H, 3.97; N, 5.46%. Calcd for

C₆H₁₀INS: C, 28.25; H, 3.95%; N, 5.48%.

Exchange Kinetics. The salt $(5\times10^{-2}\,\mathrm{mmol})$ was weighed accurately in NMR tube and 0.45 ml of CD₃OD was added. This was placed in the probe of the NMR spectrometer for 10 min. The reaction was initiated by adding 0.05 ml of the base solution by a microsyringe. 2-Methyl protons (2.98 ppm) were followed by integration as a function of time, relative to the 3- or 4-methyl protons, which was found not to be exchangeable under the present reaction conditions. The rate constants were calculated as described in the previous paper. ¹⁰)

References

- 1) R. Breslow, J. Am. Chem. Soc., **80**, 3719 (1958); Ann. N. Y. Acad. Sci., **98**, 445 (1962).
- a) A. A. Gallo and H. Z. Sable, J. Biol. Chem., 251, 2564 (1976);
 b) J. A. Zoltewicz and S. Sridharan, J. Org. Chem., 43, 3785 (1978).
- 3) Y. Yano, Y. Tamura, Y. Hoshino, and W. Tagaki, Bull. Chem. Soc. Jpn., 53, 2340 (1980).
- 4) Y. Yano, Y. Tamura, and W. Tagaki, Bull. Chem. Soc. Jpn., 53, 740 (1980).
- 5) This is not the Brönsted β value. In separate experiments, the buffer concentration (imidazole-imidazole hydrochloride) was changed with a constant buffer ratio. The rate constants were linearly dependent on the concentration of free imidazole.
- 6) J. Crosby, R. Stone, and G. E. Lienhard, J. Am. Chem. Soc., **92**, 2891 (1970); J. Crosby and G. E. Lienhard, ibid., **92**, 5707 (1970).
- 7) L. J. Gosting and P. S. Albright, J. Am. Chem. Soc., 68, 1061 (1946).
- 8) "The Merck Index," ed by P. G. Stecher, Merck and Co., N. J. (1968), p. 485.
- 9) T. Ishii, J. Pharm. Soc. Jpn., 72, 1315 (1952).
- 10) Y. Yano, T. Okonogi, and W. Tagaki, *J. Org. Chem.*, **38**, 3919 (1973).